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1. Executive Summary 
The ENERGETIC (ENergy-aware hEteRoGenEous compuTIng at sCale) project set out to look at whether the 

use of accelerators would give significant energy savings compared to CPU-only computations, and to 

determine which classes of codes should run on heterogeneous architectures. Furthermore, the project 

would examine opportunities and challenges for measuring energy in a standardised, portable manner 

irrespective of architectural platform. 

As noted in the original proposal, data centres are key to our digital world but account for a massive 12% of 

UK electricity consumption every year or 38.54TWh (Booth, Carbon3IT, Mar 2020), costing£4.6B/yr. 

Regulations in the UK, EU and rest of the world mandate net zero in data centres in the next 20-30 years. 

The proposal aimed to test whether the use of heterogeneous architectures could significantly reduce the 

energy-to-solution of common HPC workloads and thus the energy consumed by UKRI data centres. In order 

to determine potential role of architectures in reducing energy-to-solution, we set out to identify typical 

algorithms representing a wide range of applications and then to apply micro-benchmarks on relevant target 

hardware (both in selected existing data centres and stand-alone, controlled compute environments). 

Furthermore, we set out to review existing energy monitoring frameworks in order to use the most 

appropriate for this work.  

We used the benchmarks to quantify the energy consumption on different architectures, and determined 

configurations that reduce energy-to-solution across a range of computational problems. Our work can used 

to estimate the energy used by applications that use significant HPC resources and to provide evidence-

based recommendations for the UKRI Net Zero DRI roadmap including future data centre procurements.  

During the implementation of the proposal, we expected to identify challenges and barriers to energy 

monitoring at the application level on shared facilities and therefore planned a workshop involving key 

stakeholders with the intention of disseminating our experiences, understanding better the current 

landscape of energy monitoring in compute-focused Digital Research Infrastructure (DRI), and to begin 

working towards an agreed framework for comparable energy measurements across devices and systems. 

The project members are: 

• Dr. Michael K. Bane, Lecturer, Manchester Metropolitan University (MMU). PI 

• Dr. Deepayan Bhowmik, Newcastle. Co-I 

o Mr. Teymoor Ali, Newcastle. Researcher 

• Dr. Oliver Thomson Brown, Edinburgh Parallel Computing Centre (EPCC),  

University of Edinburgh. Co-I 

• Dr. Jamie Quinn, University College London (UCL). Co-I 

o Dr. David Stansby, UCL. Researcher 

This Final Report summarises our findings. In terms of energy savings we observed energy savings in each 

selected benchmark (when run for the largest of the test data sizes) when using an accelerator rather than 

solely CPU, although the accelerator with lowest energy-to-solution is sometimes GPU and sometimes 

FPGA.. In terms of measuring energy, we conclude that making such measurements are possible but 

challenges exist to exposing such data to users on HPC systems. 

  



2. Introduction and Systems Considered by this Project 
The project is interested in the energy consumed (where energy is the integration of instantaneous power 

over time) as the metric directly related to CO2 released in generating that energy. Note that the total 

Carbon footprint of computation would comprise energy consumed by compute nodes but also by 

infrastructure i) to cool these nodes, ii) for networking, iii) for storage. The project took a pragmatic 

approach by considering only the energy consumed by the compute nodes, presuming that savings here will 

also give proportional savings in cooling. Typically cooling response is proportional (but perhaps non-

lineaerly) to power peaks & profile, rather than energy consumed, but the difference only becomes relevant 

when usage of the device swings rapidly between high and low. The energy consumed by a single compute 

node itself comprises several components: energy consumed by the central processing unit (CPU), its 

memory (RAM), by graphics processing units (GPU(s)), by field programmable gate arrays (FPGA(s)), by any 

attached storage and also by the remaining “dark silicon” (within the compute node, necessary to run the 

CPU etc). Below we discuss how (and when) it is possible to measure these components. Note that some 

PSUs (Power Supply Units e.g. transformers) also provide (board-side) data over “i2c” protocol and that 

some data centres use smart PDUs (Power Distribution Units that typically power several nodes) which could 

be queried to determine total energy consumption (including transformer losses and all the above 

components) of a given set of nodes. 

The project proposed highlighted two types of systems to be used: 

a) HPC. We noted we would use the ExCalibur Hardware & Enabling Software FPGA testbed hosted by 

EPCC augmented by the purchase of a GPU card. This system hosts a variety of Xilinx and Intel FPGA 

cards. In this project we used the node with an Alveo U280 FPGA and a NVIDIA A100 GPU to run 

benchmarks. This node had an  AMD EPYC 7502 CPU. 

The project also had access to one of UCL’s HPC machines, Myriad [Myriad], which has a mixture of 

Intel Xeon Gold nodes (with some nodes having NVIDIA P100, V100, or A100 GPUs although these 

were not used within this project). For this project we used Myriad to run CPU benchmarks. All 

benchmarks were run on a node with an Intel Xeon Gold 6240 CPU, using all 36 available cores. 

b) Workstation. Newcastle was to purchase workstation comprising CPU host with FPGA and GPU PCIe 

cards. Various delivery delays meant this did not arrive until past half-way of the project. To 

mitigate, Newcastle provided access to a similar Linux (Ubuntu) workstation that comprises of an 

Intel i9-11900KF CPU, NVIDIA A2000 GPU, and a Alveo U50 FPGA. 

3. Overview of Measuring Energy Consumption on Heterogeneous Systems 
We undertook a short literature survey and practical “hands-on” experimentation to discover and compare 

approaches to measuring energy consumed on CPU, GPU and FPGA architectures. We give an overview of 

these approaches in this section.  

CPU Cores Energy Measurements 
Measuring energy consumed by CPU cores is relatively straightforward.  

Intel provides RAPL (“Running Average Power Limit”) [see Chapter 14, Volume 3, Intel] which provides 

accumulated energy consumption (since an arbitrary point in time) for various system domains. This data is 

updated at approximately one millisecond intervals and is exposed via  model specific registers (MSRs), also 

frequently referred to as hardware counters (HWCs). MSRs may require elevated privileges for read access. 

The specific domains which RAPL provides data for varies between client processors (Package, Power Plane 0 

and Power Plane 1) and server processors (Package, Power Plane 0, and DRAM). 

Intel chips are used in various UKRI DRI including Cirrus (EPCC system) and CSD3 (Cambridge system). 



AMD also provides RAPL data via MSR, see for example [Schone, 2021]. AMD chips are used in various UKRI 

DRI including the Tier 1 national supercomputing service ARCHER2, and Tier 2 facilities such as the Sulis high 

through-put facility [Sulis]. 

On the EXCALiBUR H&ES FPGA Testbed, Likwid [LIKWID] was used to take energy measurements of the AMD 

CPU on the compute node which also hosted an NVIDIA A100 and a Xilinx U280 FPGA. Likwid is a 

performance monitoring framework designed to work across a variety of architectures, including Intel, IBM, 

and AMD CPUs, and NVIDIA GPUs. One of the tools included in the framework gives access (and an interface) 

to hardware performance counters, and hence also power measurements, which can be integrated over 

time by the user to calculate energy.  

There were no ARM chips within the test systems of this project. Currently ARM chips are only used in UKRI 

DRI at specific test facilities, such as Fulhame at EPCC, or GW4 Isambard. Note that although ARM is well 

known for its low power CPUs, ARM HPC processors use approximately the same power and energy as any 

other comparable CPUs [MB3D6.9]. 

GPU Energy Measurements 
All GPUs used within this project were NVIDIA GPUs, all of which support nvidia-smi and NVML (NVIDIA 

Management Library). The former provides a text interface listing various properties of one or more given 

GPU cards, including the instantaneous power. Polling nvidia-smi frequently and then integrating the power 

measurements over time will give an estimation of the energy consumed by the GPU. NVML is a C-based API 

which provides total energy consumption since the last time the driver was reloaded. To find the total 

energy consumption of a particular job it can be run at the start and end, the difference between the return 

values taken. This project took the polling nvidia-smi approach since NVML would require either manually 

instrumenting code or developing a portable wrapper. 

NVIDIA GPUs are used in various UKRI DRI including Cirrus [Cirrus], Baskerville [Baskerville], and JADE2 

[Jade2]. 

FPGA Energy Measurements 
Xilinx FPGAs (from AMD) can be queried via Xilinx Run Time (XRT), specifically by use of the “xbutil” 

command which provides data on instantaneous power and current & voltage data for various power rails. 

This data is also exposed via PCI directories within /sys/devices on the host, providing current draw and 

voltage in separate files at ~0.1s cadence. These were sampled and logged, multiplied together to get an 

estimate of power consumption, and integrated over time to get an estimate of total energy consumption. 

The project considered primarily Xilinx FPGA platforms due to their prominence over Intel/Alterra FPGA 

platforms and due to lack of ready access to HPC-level Intel FPGA platforms. 

FPGAs are not currently a key element of UKRI DRI, and as with ARM chips exist only in specific test facilities 

such as the ExCALIBUR FPGA testbed. 

Note that we only consider energy to solution and neglect energy to compile the FPGA bitstream (and 

similarly neglect energy to compile for CPU and GPU). Whilst a typical ~hours’ FPGA synthesis (on a CPU) 

may consume significant energy, this would become insignificant when consider a production code running 

thousands of times per synthesis. 

Workstation, Node and Cluster Energy Measurements 
There are also various options for determining the energy measurement of a full node (whether HPC node or 

standalone workstation) and of a set of nodes.  



Some motherboard PSUs support i2c, IPMI or RedFish protocols to provide instantaneous power 

consumption of the transformer. These gives the total (CPU, RAM, disk, fans and “dark silicon”) power 

consumption, either on the output (board side) of the transformer or on the input side (in which case 

measurements also include any transformer losses). 

In a typical data centre, nodes will be powered from Power Distribution Units (PDUs) which are also 

instrumented, although it is not typical for users to be able to directly obtain such data. For resilience, each 

HPC node is likely to be able to draw power from two PDUs and each PDU would power different sets of HPC 

nodes. This makes determination of power provided to a given node non-trivial, although it is possible where 

a protocol such as SNMP or IPMI is supported. Some nodes also support a Baseboard Management 

Controller (BMC) which allows (typically) system administrations access to various metrics including power 

data. 

For standalone workstations, a comparative approach is to use a wall socket measuring device such as “UK 

Plug Power Meter” [UKplug] or the UK equivalent of Kill-A-Watt [KillAWatt]. 

The above approaches are beyond the scope of the project. However, in order to ground truth the 

RAPL/nvidia-smi/xbutil approach of ENERGETIC we also obtained intrusive measurements as described in 

Section 4.1 “Hardware/Software Measurement Approach”. 

Software Interfaces to Obtain Energy Measurements 
In addition to above there are several other approaches to measuring energy consumption via software. 

The limited scope of this project meant that these could not be practically explored but for completeness we 

give a short summary and references for each. We would recommend that future work explores these in 

more depth. 

On a Linux system, the sensors suite of utilities can be employed to examine available sensor data. 

Depending upon hardware and Linux kernel configuration this may include instantaneous power 

consumption of the CPU and other system elements, and superuser access may be required. Typically, 

“lm_sensors” or some X11 client interface would be used to expose such data. Similarly, applications such as 

Open Hardware Monitor [Open Hardware Monitor] and hwmonitor [CPUID] can be downloaded and run on 

MS Windows, exposing available data. Many such applications exist for Windows, see 

https://www.techspot.com/article/2009-monitoring-analysis-benchmarking-software-apps/, with varying 

access for CPU and GPU data. In all the above cases, for Linux and Windows, these utilities do not currently 

provide power nor energy data for FPGA hardware. 

PAPI, the Performance Application Programming Interface, is a performance-monitoring library that includes 

an API and some standalone commands, for measuring power on CPUs and GPUs. [PAPI] 

GEOPM, the Global Extensible Open Power Manager, is “a framework for exploring power and energy 

optimizations targeting heterogeneous platforms. The GEOPM package provides many built-in features. A 

simple use case is reading hardware counters and setting hardware controls with platform independent 

syntax using a command line tool on a particular compute node. An advanced use case is dynamically 

coordinating hardware settings across all compute nodes used by a distributed application is response to the 

application's behavior and requests from the resource manager.” [GEOPM]  

PowerAPI aims to bring relevant actors together to get a communally accepted API that can help drive 

energy efficiency at various levels within an HPC system stack, see [Laros et al] and [PowerAPI]. 

PowerStack aims to work with “experts from academia, research laboratories and industry in order to design 

a holistic and extensible power management framework, which we refer to as the PowerStack. The 

https://www.techspot.com/article/2009-monitoring-analysis-benchmarking-software-apps/


PowerStack explores hierarchical interfaces for power management at three specific levels: batch job 

schedulers, job-level runtime systems, and node-level managers. Each level will provide options for adaptive 

management depending on requirements of the supercomputing site under consideration. Site-specific 

requirements such as cluster-level power bounds, user fairness, or job priorities will be translated as inputs 

to the job scheduler. The job scheduler will choose power-aware scheduling plugins to ensure compliance, 

with the primary responsibility being management of allocations across multiple users and diverse 

workloads. Such allocations (physical nodes and job-level power bounds) will serve as inputs to a fine-

grained, job-level runtime system to manage specific application ranks, in-turn relying on vendor-agnostic 

node-level measurement and control mechanisms.” [PowerStack] 

Variorum is “an extensible, vendor-neutral library for exposing power and performance capabilities of low-

level hardware knobs across diverse architectures in a user-friendly manner.” [Variorium] 

It is important to note that there is much active research into measurement and reduction of energy 

consumption of HPC facilities, see [InsideHPC] and the working groups of the Energy Efficient HPC Working 

Group [EEHPCWG] of which Bane is an active member. 

4. ENERGETIC Workshop at CIUK 
On Friday 2nd December 2022, the ENERGETIC project held a discussion workshop collocated with 

Computing Insight UK (CIUK) in Manchester on 1-2 December 2022 [CIUK]. There were around 25 attendees 

to the ENERGETIC workshop, with UKRI Digital Research Infrastructure (DRI) users, system administrators, 

and hardware vendors represented. After a short introduction, the workshop divided in to three groups, 

each focused on one discussion topic. 

The three discussion prompts presented to participants (to discuss one per group) were:  

• Energy advantage.  

o Some applications may consume less energy overall when run on one or more accelerators (i.e. 

GPUs, FPGAs). Which types of applications? Which accelerators?  

• Fair comparison across architectures.  

o Energy benchmarking frameworks should be standardised to compare fairly across architectures.  

• User-level energy benchmarking.  

o Energy usage is highly dependent on specific job, so users should be able to benchmark their 

own jobs' energy usage across UKRI DRI. 

As is natural with such discussions, the scope of responses was wider than suggested by the prompts. 

Members of the ENERGETIC project were on hand to moderate and write notes on the discussion, but the 

decision had been taken beforehand not to enforce the topics too strictly. Discussion relevant to the wider 

ENERGETIC project was allowed and recorded. Below is a summary of the discussions in each group. This 

may not represent the views of the ENERGETIC project. 

Energy advantage 

• The applicability of accelerator devices can be limited by the scale of the problem being tackled. 

Weather forecasting for example, which requires whole-earth models, needs large distributed 

computers. Accelerated systems at that scale are a very significant investment, and no such machine 

is currently available in the UK [TOP500]. On the other hand, such systems (with GPUs) do exist, and 

currently dominate the top 10 largest (by compute capacity) supercomputers worldwide.  

o Users may be forced to use less energy efficient architectures by the scale of their problems.  

o Equivalently, the most energy efficient architecture will be dependent on the scale of the 

problem. Small problem sizes may run on devices with limited available memory, such as 

FPGAs, but sufficiently large FPGA systems may not exist for larger problem sizes. 



• When overheads with a fixed energy cost such as cooling and memory dominate, the problem of 

minimising energy efficiency is equivalent to the problem of maximising parallel efficiency.  

o Problems should be packed into as few nodes/accelerators as possible, to minimise 

overhead energy cost. 

o Gaining energy advantage on a given architecture requires maximising the usage of the 

nodes/accelerators throughout the runtime of the job.  

• Programming models and programmability can be a major barrier to energy efficient use of 

accelerators. FPGA programming is particularly hard, but efficient GPU code is also challenging to 

write.  

o Inefficient use of an accelerator will never be energy efficient, but well optimised 

implementations require advanced programming skills/knowledge. 

o Avoiding memory or communication bound implementations may be challenging or even 

impossible for some algorithms. 

o Non-trivial to exploit the host CPU while the accelerator is being used (thus avoiding the 

host idling in terms of computation (but consuming some energy) while waiting for data 

from the accelerator). 

o Better tools and skilled RSEs required to design and implement energy efficient codes (see 

Green Software Engineers discussed in the “fair comparison across architectures” group) 

• As well as considering individual codes, we should consider multi-program workflows/pipelines. 

Smart workload management tools, could identify the most energy efficient partition of a 

heterogeneous system to run individual components on.  

o The challenge here is developing the model on which the workload manager relies. 

o Within codes this same model could be adopted by tasking frameworks which use Petri nets 

to map task dependencies and available resources, such as Fraunhofer’s GPI-Space 

[EHSD4.2]. 

• General agreement that data on energy efficient applications and hardware should be shared.  

o Perhaps something similar to the Kaggle project, which shares datasets and code for 

machine learning [Kaggle]. 

Fair comparison across architectures 

• Agreement that it is important to capture the energy usage of the whole node.  

o Multiple nodes is more of a challenge as unclear how to handle shared resources such as the 

network and the filesystem. 

• Methodology behind energy & power measuring tools not always clear.  

o Typically relies on hardware counters, but not always clear (to users) what exactly that 

means. 

o Not clear to what extent the measurements encompass the whole node. 

o Energy is key, but hardware counters (typically) provide power measurements which must 

be integrated. 

o In distributed systems, a parallel reduction would be required to produce a single average or 

total number (or all nodes would need to be individually reported). 

o Sample rate may be important for uneven workloads. No standard for this, may be up to the 

user to determine what is necessary and implement their own sampling solution. 

• Variation in what's possible across platforms, as power measurement is implemented by hardware 

vendors, with no formal standard interface (or methodology).  

o Standardisation of interface and methodology would be very useful. 

o As an example, the ENERGETIC project was unable to make use of the Cirrus facility at EPCC 

for benchmarking, as access to the energy encounters was not available in the OS. The OS is 



not standard, and is instead provided by the hardware integrator, HPE. The systems team 

have raised a case with HPE in the hopes that this can be fixed. 

• Ideally, the way in which energy will be measured will be specified at the procurement stage of UKRI 

DRI, in order to ensure that the functionality is consistently available. 

• Properly comparing energy usage across architectures may not be entirely automatable, and may 

require training of users.  

o The group suggested that Green Software Engineers (GSEs) be trained to do this kind of 

work, as well as developing and deploying energy efficient codes, and training others. 

User-level energy benchmarking 

• Slurm can be configured to give per-node power information, but not more refined data than this 

currently.  

o Requires hardware counters to be supported (for example through IPMI on Intel 

architectures), and operating system support, as noted above. 

o More sophisticated energy monitoring plugins could be written for slurm and incorporated 

in the future. 

• Power data from the PDU is time consuming for system administrators to set up. 

• Accuracy of information is important, as universities are focused on running costs. 

• Many tools exist, but they are not refined or user-friendly enough.  

o There is no standard interface, and they vary in quality. 

o There is a lack of education for users/students about how to benchmark their own energy 

usage (see above comment re GSEs providing training) 

o Tools do not always expose what their methodology is or which assumptions are embedded 

in their measurements. 

• Examples of tools:  

o Intel RAPL, a standard tool on Intel architectures. 

o Likwid, a more generic tool which supports many architectures. 

o VTune, an Intel profiling tool. 

• An important point, and sometimes one of contention, is that there are security considerations 

related to energy benchmarking, as a consequence of the access to hardware counters.  

o Important that whole node is reserved for the one user doing benchmarking (node 

exclusive) -- this is also important for ensuring accurate energy benchmarking. 

• HPE Cray are generally good at providing lots of information on energy usage. 

• As also discussed in other groups, it is unclear how to deal with shared resources such as the 

network and storage. 

• Memory access patterns likely to impact energy efficiency.  

o Certainly they impact performance, and the two are linked. 

• Hard, and maybe undesirable, to try and quantify “science” to try and create “science-per-Joule” 

metric, but should be possible to compare one code across many architectures. 

• Characteristics of an ideal tool:  

o Would provide time series data per job, including CPU, memory, and IO usage and energy 

usage. 

o Would export data to users without root privileges. 

o Would allow live time series that would enable on the fly configuration to take place. 

o Would support a range of accelerators, and even be able to suggest the best choice. 

o Would enable optimal frequency selection per job (based on CPU/memory/communication 

boundedness). 



• Would be great to see standardisation of energy data between hardware vendors to better enable 

comparison. 

• Tools would need to be standardised if (when) journals or grants began requiring energy usage data. 

Conclusions 
In spite of the disparate discussion topics, common themes appeared across all groups. 

1. Standards for energy measurement across platforms are highly desirable. 

2. Better tools are needed to support those standards, as well as support less experienced users. 

3. There is a need for better education for UKRI DRI users on energy efficient computing.  

There was broad agreement that standards for energy measurement across platforms are highly desirable. 

Since there are various valid choices concerning the specific implementation of energy measurement, it is 

very important that the chosen methodology is clearly documented. It is often not clear exactly what is being 

measured by energy measurement tools, or how. An ideal situation would be that all UKRI DRI systems had 

the same (or equivalent) tools available to consistently and compare energy usage across systems. This 

would need to be mandated in procurement process and would require support from hardware vendors and 

integrators, as energy measurement needs to be supported in both the hardware and operating system as 

well as by application-level tools. Even system administrators may not have access to the information 

required to monitor energy usage at the level of a particular job, or even a single node.  

It was broadly agreed across discussion groups that better tools are needed. There are high-quality tools 

which support specific architectures, or even multiple architectures, but only one at a time. The user is 

responsible for implementing whole-node energy measurements (or as close to it as the available tools 

allow). Integration with the job scheduling tool Slurm (as on ARCHER2 [A2DOCS]) creates a very user-friendly 

experience, as it requires no additional effort from the user and makes the data available asynchronously 

within 24 hours of job completion, but does lack transparency about how the data is collected. There was no 

known or suggested standard way to include the use of shared resources such as the network and storage in 

the energy usage.  

The final theme which occurred across discussion groups was the need for education on all aspects of energy 

efficient computing. Users who wish to make their own scientific computing 'greener' may be unsure how to 

make appropriate measurements of their energy usage (in part due to the complexity of tools), how to 

interpret the data they may gather, or what to do about it once they have the data. One suggestion was the 

development of 'Green Software Engineers (GSEs)'. Given the finding of the wider ENERGETIC project that 

even on heterogeneous systems parallel efficiency is still a good proxy for energy efficiency, the skills of a 

GSE would not be dissimilar from those of Research Software Engineers (RSEs) or HPC developers, but there 

is room for specific training on energy measurement and reduction, and the impact of hardware choices. 

The ENERGETIC project thanks the organisers of CIUK 2022 for hosting the ENERGETIC workshop, and to all 

attendees for contributing to the valuable discussion. 

5. Energy Measurement Tools and Techniques 
While a plethora of energy measurement tools are available, they are predominantly compute-architecture 

specific. A general overview of such options for measuring energy on different architectures was given in 

Section 2. However, a generic methodology for measuring energy in an orderly fashion for HPC systems that 

covers heterogeneous hardware is currently missing but of greater interest to the UKRI Net Zero DRI scoping 

project. This is somewhat challenging given that the wider variety of hardware available in various HPC 

clusters.  



Within the scope of ENERGETIC we address this by curating various methodologies that are used for the 

experimental purposes showing the effectiveness of those choices. In addition, we’ve experimented with 

physical measurements using power meters and data loggers. This section provides details of the approaches 

taken within the ENERGETIC project, for each of the HPC and workstation scenarios.  

Given that, we have access to only Intel CPUs, NVIDIA GPUs and Xilinx FPGAs, we make use of corresponding 

tool sets, i.e., RAPL, nvidia-smi and xbutil, respectively. For the standalone system, measurements were 

supplemented by physical power measurements. Within the scope of this work, we performed experiments 

on HPC systems hosted at EPCC and UCL, and one stand-alone workstation at Newcastle, with combinations 

of CPU, GPU and FPGAs. The specifications of these machines are given in Section 2 and summarised in Table 

1, below, along with the measurement approaches employed.  

Machine Classification Configuration CPU energy GPU energy FPGA energy 

Excalibur H&ES 
FPGA testbed 
(NextGenIO) at 
EPCC 

HPC AMD CPU, 
NVIDIA GPU, 
Xilinx FPGA 

Likwid Polling nvidia-
smi and 
integrating 
over time 

xbutil 

Myriad at UCL HPC Intel CPU RAPL N/A N/A 

Newcastle 
machine 

Workstation 
(Linux boot) 

Intel CPU 
NVIDIA GPU 
Xilinx FPGA 

RAPL Polling nvidia-
smi and 
integrating 
over time 
 

Polling xbutil 
and integrating 
over time 
 

Data logger  Clamp over CPU 
=> instant power 
or can add from 
output 

Clamp over 
GPU => instant 
power or can 
add from 
output 
 

Clamp over 
FPGA => 
instant power 
or can add 
from output 

Table 1: Computing architectures and their energy measurement methods used in ENERGETIC 

While the software-based measurements are vendor provided and standard, the methodology used in physical 

measurement require some description which was developed in this project. It is to be noted that physical 

measurements capture the real-life data while the software-based approaches are the best estimates, albeit 

fairly accurate estimates. One of the key differences are the physical measurements also include the energy 

consumed by other system electronics, which is reflective of the overall energy usage. However, the physical 

approach is intrusive and requires access to power inputs which is not always feasible and probably not 

required for the holistic estimation. Our experiments with both type of measurements ensure the reliability 

(and the differences) of both measurement techniques so that informed recommendations can be made.  



 

Figure 1: Physical energy measurement using clamp meter and data logger 

Physical Measurement Approach 
To complement the software-based energy measurement the project employer a power analyser with data 

loggers along with current clamp meters (and other peripherals) for the physical energy measurement of the 

standalone machine at Newcastle. The overall set up and the list of required tools are shown in Figure 1 and 

Table 2, respectively.  

Hardware/Software Tool Description 

Qoitech AB Otii DC Power Analyzer 
 

Otii Arc is a small, portable power supply, a 
current and voltage measurement unit and a 
data-acquisition module. 

RS PRO RS CP-10 Current Clamp Current Clamp is a transducer which will allow 
the datalogger to measure low electrical or/and 
electronic current up to 80 amperes AC/DC. 
Clamp measure conversion (10mV/1A) 

AstroAI Digital Multimeter 6000 
 

The multimeter is designed to measure current, 
voltage, and resistance. 

Wall Power Monitor Plug-in type power meter socket measures and 
displays power consumption of a connected 
appliance 

Table 2: Standalone Machine Data Capture Tools 

Once the algorithm was implemented for the selected architecture, the current clamp was connected to the 

datalogger using 4mm banana plugs into the ‘SENSE+’ and ‘AGND’ pins. The datalogger software was 

launched within the Linux operating system to allow the user to start/stop logging. An example of the 

software interface is shown in Figure 2. The current clamp was attached to the non-insulated part of the 

cable from the power supply to the chosen architecture (see Figure 1). 



 

Figure 2: Qoitech AB Otii DC Power Analyzer data logging software interface 

In terms of operating procedure, the algorithm and datalogging software were run at the same time, the 

clamp meter measures the current and outputs a voltage signal. As specified in the data sheet, for every 1A 

measured the clamp outputs 10mV which is recorded by the datalogger. The datalogging software displays a 

line graph showing the current consumption over time. The mean current value is automatically computed 

from the software by using the start and stop timeline markers for the time the algorithm is executed. The 

current value is multiplied by the constant voltage (12V) supplied by the power rail to give the power. The 

total energy for the benchmark algorithm is computed by multiplying the mean power by the time it took to 

execute the algorithm. 

Software-based Measurement Approach 
The software approach uses energy measurement APIs provided by hardware manufacturers to read 

instantaneous power (Watts). A shell script wascreated to sample (every 0.1s) the power values from the API 

into a CSV file while the algorithm is being executed. The measurement approach varies depending on the 

device, RAPL gives energy consumed by the CPU directly which is written to a binary file found in the 

‘/sys/class/powercap/intel-rapl/intel-rapl:0’ directory. The Newcastle implemented bash 

script to read the RAPL values takes the initial value of the file and final value while the algorithm is being 

executed, and subtracts them to determine the energy consumed while the algorithm was running. 

The nvidia-smi command ‘nvidia-smi --query-gpu=power.draw --format=csv --loop-ms --

filename=gpu_utillization.csv’ creates a CSV file of the power values being sampled every 

millisecond, and a script started and stopped this command while analgorithm was executed. The FPGA uses 

xbutil command ‘watch -n 0.1 xbutil examine --device 0000:03:00.1 --report 

electrical’, with a similar process  to the GPU measurement using a script to start and stop the reporting. 

To make fair comparison, the software/hardware measurement approaches on the workstation were 

completed at the same time for all algorithms executed on each architecture. This allows us to create 

ground-truth data from the physical measurement to compare with estimated energy from the software 

power models (RAPL, nvidia-smi & xbutil). In addition to this we also used the wall power meter which 

measured the total energy consumed by the whole machine. 



Note that we did not have physical access to either HPC facility, and did not have time to organise access to 

PDU data with facility managers. 

in Figures 3 and 4, we compare mean measurements for each approach and observe a common pattern in 

relative values, if not in absolute values. (We additionally provide comparative box whiskers plots in 

Appendix). The disparity between both software and physical measurements are due to various factors.   

 

Figure 3: Software & Datalogger measurements for benchmarks 

 

Figure 4: Software & Datalogger measurements for benchmarks 

Firstly, there may be electromagnetic interference (EMI) from other nearby conductors (specifically other 

cables) which may affect data being logged. Although, care was taken to isolate the cables while measuring 

the power. Additionally, Software-based measurements rely on algorithms to estimate power based on the 

readings from sensors which may lead to overestimations. 
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6. Analysis of Energy Consumption for Representative Benchmarks on Heterogeneous 

Systems 
The project aimed to test whether the use of heterogeneous architectures could significantly reduce energy 

to solution of typical HPC workloads and thus the energy consumed by UKRI data centres. In order to 

determine the potential role of architectures in reducing energy-to-solution, we tried to identify prototypical 

algorithms representing a wide range of applications and apply micro-benchmarks on relevant target 

hardware (both in selected existing data centres and stand-alone controlled compute environments).  

As part of this process, we employed selected benchmarks to quantify the energy consumption on different 

architectures, and determined the optimal hardware configuration to reduce energy-to-solution. To identify 

particularly significant algorithms (and thus inform the choice of benchmarks) we choose to characterise 

sample applications in terms of Berkley’s thirteen dwarves' symbolic computation [Asanovic et al], a 

categorisation that describes various types of parallel computations relevant to HPCs. The sample 

applications were drawn from a list of applications which use significant amounts of HPC resources in the 

UK, mainly on the UK’s national service ARCHER2 and its predecessor ARCHER. While this leads to an ideal 

list for benchmarks, a more pragmatic approach was taken considering the short life span of this project; we 

focused on the algorithms that are present in the HPC challenge benchmark suite [hpcc] that have complete 

implementations targeting our architectures of interest: CPU, GPU and FPGA. The main challenge was 

finding appropriate ports available for the specific FPGA cards used by ENERGETIC and reliance upon some 

level of optimisation having been performed. The project timescales excluded porting and optimising, and 

the debugging that was still necessary was constrained by FPGA development requiring a long synthesis 

time, in our cases sometimes taking several hours. 

While this approach provides a set of benchmarks to focus our testing upon, we additionally considered 

convolutional neural network as computer vision is becoming mainstream, can require massive amount of 

computational effort and can be considered representative of emerging deep learning paradigms. 

Additionally, further experiments were conducted on embedded systems for all three target architectures.   

In this work we have used four different representative benchmark algorithms, namely, SGEMM 

(representing matrix multiplication), FFT (Fast Fourier Transformation representing spectral methods), 

STREAM (measuring memory bound computation and communications) and CNN (Convolutional Neural 

Network representing emerging machine learning techniques for computer vision applications). Further 

details of the algorithms and their association with thirteen Dwarfs are given in Table 2.  

Algorithm Description Dwarf association 

SGEMM Single precision GEneral Matrix Multiply measures the 
floating-point rate of execution of single precision real 
matrix-matrix multiplication. 

#1 Dense Linear Algebra 

FFT Fast Fourier Transforms convert data from a real 
domain to a spectral (or frequency) domain.  

#3 Spectral Methods 

STREAM A simple synthetic benchmark program that measures 
sustainable memory bandwidth (in GB/s or MB/s) and 
the corresponding computation rate for a simple vector 
kernel. 

#1 Dense Linear Algebra  

CNN Convolutional Neural Network provides the framework 
for emerging deep learning based methods for 
computer vision tasks, e.g. classification and 
segmentation  

#6 Unstructured Grids 
#10 Dynamic Programming 

Table 3: Benchmark algorithms used in ENERGETIC, their description and association with Dwarfs. 



The specific ports we used are shown in Table 4, below: 

 CPU GPU FPGA 

GEMM SGEMM sample 
benchmark  
[Intel-gemm] 

NVIDIA port 
[cublas] 

Xilinx Vitis benchmark 
[vitis_gemm] 

FFT FFT sample benchmark 
[FFT] 

NVIDIA sample  
[cuFFT] 

Xilinx Vitis benchmark 
[vitis_fft] 

STREAM Original CPU version 
[stream] 

Cumming port  
[cuda-stream] 

HPCC_FPGA port  
[hpcc-fpga] 

CNN Pytorch [pytorch] Pytorch CUDA [pytorchC] Xilinx Vitis port [cnn] 
Table 4: Detail of implementation ports used for benchmarks. 

The CPU clock frequency on both the nextgenio and Myriad CPUs is fixed. For the workstation runs, 10 

measurements were made for each benchmark and the mean calculated and reported. Given the size of the 

benchmark problems, the benchmarks were measured on the HPC systems only once each and those 

runtime and energy measurements used in the analysis. GEMM specifically was tuned using the benchmarks’ 

exposed parameters to optimise performance on the target HPC systems.  Care was taken to have exclusive 

use of the relevant HPC nodes.  

 

A full set of the scripts employed by the project is available from the Energetic github site [Energetic]. We 

have also published scripts and raw data at [e-space]. 

Data Summary 
We’ve obtained results for the benchmarks defined above. For each of these algorithms, we have used 

multiple parameters to test the stability of the outcome. The algorithms were executed on two different HPC 

systems, EPCC’s NextGenIO and UCL’s Myriad, and ENERGETIC’s standalone computing infrastructure hosted 

at Newcastle. Wherever applicable, HPC hardware architectures include Intel Xeon Gold 6240 CPU, NVIDIA 

A100 GPU and Xilinx/ARM Alveo U280 FPGA. For the standalone computing platform at Newcastle, we have 

used Intel i9-11900KF CPU, NVIDIA A2000 GPU and Xilinx/ARM Alveo U50 FPGA. Run time, software and 

physical energy measurements are carried out as described in Section 5.  

Hardware Clock 

CPU: i9-11900KF 3.50 GHz 

CPU: Xeon Gold 6240 2.60 GHz 

GPU: Nvidia A2000 1200 Mhz 

GPU: Nvidia A100 1095 Mhz 

FPGA: Xilinx Alveo U50 Kernel: 300 Mhz 

FPGA: Alveo U280 Kernel: 300 Mhz 

Table 5: Clockspeed of hardware used. 

  



SGEMM 
The single precision general matrix multiply benchmark is a micro-benchmark that tests one of the most 

basic operations in linear algebra, an operation which is used as part of many algorithms in HPC. It helps 

inform when accelerators are appropriate for processing computations involving dense linear algebra. 

This benchmark was run using two different problem sizes, a matrix size of 4096x4096 and a large size of 

16384x16384. Only the smaller problem size was able to be run on the smaller FPGA, the U50, and only the 

larger problem size was run on the larger GPU, the A100. When using accelerators, it is possible to measure 

the energy used by the accelerator and the CPU independently as the benchmark runs, giving a useful 

measure of how much energy a host CPU uses while supporting a computation on an accelerator. 

 

Figure 5: Relative run times of SGEMM benchmark. 

Figure 5 shows the runtime of each benchmark on each target architecture normalised to the CPU runtime 

for comparison between devices and problem size. Since this is execution time, lower is better. The 

measured runtimes for the CPU benchmarks are displayed above the respective bars. Clearly the FPGAs 

struggle in this benchmark, suggesting the particular algorithm used in this benchmark does not suit the 

dataflow parallelism inherent in the FPGA. The GPU sees significant speedup over the CPU only for the large 

problem size, indicating that the smaller problem size cannot efficiently utilise the massive parallelism of 

either GPU. The maximum speedup we found when using the larger problem size was when using the A100 

GPU, giving a speed up of nearly 40x (3912%) relative to the CPU implementation. 

 



  

Figure 6: Relative energy consumption of SGEMM benchmark. 

Figure 6 shows the relative energy of the same benchmarks as those shown in the runtime plot, again 

normalised to the energy consumed by the CPU during the CPU-only benchmarks. For each architecture we 

plot two bars, the green bar on the left represents the energy used while running the smaller problem size 

(N=4069) and the orange bar on the right, the larger problem size (N=16394). During the accelerator 

benchmarks both the accelerator and CPU are active and use energy; the energy used by the accelerator is 

represented by the solid portion of each bar and that used by the CPU is represented by the clear portion. In 

the CPU benchmarks all energy is used by the CPU. It is clear the CPU uses significant energy while the 

relevant computation is performed on any of the accelerators, indeed it is so significant when using the 

U280 FPGA that the CPU uses nearly three times as much energy as the FPGA itself, despite not performing 

any of the computation. Despite this, and despite the relatively long runtime of the U280 benchmarks, it still 

manages to use far less energy than the CPU-only benchmark. Again, we see the effect of the problem size 

on the A2000 where the long runtime in the small problem size case results in more energy being used by 

both the GPU and CPU. This is further compacted by the host CPU (an i9 consumer grade CPU; results not 

shown) being less energy efficient than the presented Xeon. For the large problem size, the GPU is both 

faster and more energy efficient. The smaller FPGA, the U50, struggles to compete in either runtime or 

energy efficiency, suggesting that if more powerful hardware is available to a user, and their problem size is 

large enough to make efficient use of it, they should opt for the more powerful (and in this case, newer) 

hardware. The maximum energy efficiency gain when using the large problem size was when using the A100 

GPU, showing a reduction factor of 2.32x compared to the CPU implementation.  

  



FFT 
Like the SGEMM benchmark, the 2D FFT benchmark was run using single precision on all devices and two 

problem sizes were tested, again using matrices of size 4096x4096 and 16384x16384. This particular 

benchmark was only run on the Newcastle standalone machine. It was performed 10 times per run and 

presented here are the mean runtime and energy of those ten runs. 

 

Figure 7: Relative run times (top) and energy consumption (bottom) for FFT benchmark. 

Figure 7 shows the runtime and energy for the 2D FFT benchmark across the architectures available in the 

standalone machine, where again the measurements are presented normalised using the relevant 



measurements from the CPU-only benchmark. Both accelerators are more time and energy efficient than 

the CPU for this particular benchmark with the exception of the large energy used by the A2000 for the small 

problem size. It is unclear why the CPU uses significantly more energy than any other case, however the GPU 

itself does show significant energy savings over performing the computation on the CPU. Overall, the FPGA 

seems to perform the best over both problem sizes, using less total energy than the A2000 in either case. 

With its small runtime, the effect of CPU energy use is minimised. Overall, the best-case improvement in 

both energy efficiency and runtime was when using the U50, reducing the runtime by a factor of 10x and the 

energy by a factor of 17x for the large problem size. 

STREAM 
The STREAM benchmark differs from the SGEMM and FFT in that it primarily measures the effect of memory 

bandwidth, not computational power. In the CPU implementation, this measures the performance of the 

main memory, while in both accelerator implementations this measures the performance of the device 

memory, not the host memory. This allows us to ask questions about codes which are primarily memory-

bound, that is their performance is limited by memory bandwidth. 

 

Figure 8: Relative run time (top) and energy consumption (bottom) of STREAM benchmark. 

Figure 8 shows the runtime and energy use of the STREAM benchmark across three architectures, the HPC 

CPU (Xeon), and the two accelerators found in the standalone machine, the A2000 GPU and U50 FPGA. 

While the accelerator benchmarks are running there is relatively little required of the CPU, so the energy 

used by the CPU can be considered waste energy that could be minimised by using a lower-powered CPU. 

The lower runtime and better energy efficiency of the accelerator benchmarks show that memory-bound 



problems can be time and energy efficient on these devices, mainly due to the (typically) higher bandwidth 

memory used on these devices. Due to the limited possible gains here, the accelerators are able to improve 

on the runtime and energy use of the CPU implementation only moderately, with the A2000 providing a 24% 

speedup over the CPU and the U50 providing an energy reduction of 26%.  

CNN 

  

  
Figure 9: Comparative run times (left) and energy consumptions (right) of MobileNetV2 (top) and ResNet50 (bottom) CNN 
benchmarks. 

Convolutional neural networks (CNN) have become ubiquitous in many fields, making them suitable as a 

benchmark between architectures. The convolution layers implemented in many CNN architectures are the 

most critical as their operations constitute the majority of the total computation time, which has the 

potential to be accelerated.   

The CNN energy consumption and inference time for each CNN architecture on each accelerator are shown 

in Figure 9, above. The results also include an emerging processor called 'Nvidia Jetson Xavier', aimed at 

embedded systems. The technology is based on Nvidia's Ampere architecture for discrete graphics 

processing units and has an integrated ARM core. Finally, N is the number of 3840 x 2160 images processed 

by the CNN. In this case, the graphs show results for one image and ten images, respectively. 

The results for MobilenetV2 architecture show that the FPGA has a 2.35x speedup compared to the CPU and 

outperforms other architectures on runtime. Although, in comparison to the GPU, there was a minor 

runtime difference between the FPGA. On the other hand, considering the power consumption shows that 

the Xavier NX leads with a 4.1x energy improvement but at a high cost to runtime due to fewer processing 

cores available and lower clock speed. Additionally, the CPU power consumed while transferring data or 

waiting for GPU or FPGA to execute the algorithms is large enough that the total energy consumed is nearly 

equivalent to the single I9 CPU. Finally, regarding the accuracy of the images classified on each architecture, 

the FPGA performs the worst at 60% classification accuracy on ten images, which can be attributed to the IP 

designer's optimisations (e.g., pruning) on the CNN architecture to trade-off speed for accuracy. 



The figures for ResNet50 indicate that U50 FPGA implementation does outperform the CPU, GPU and 

XavierNX in runtime, with a 1.567x speed up. However, the ResNet50 runtime results for CPU and GPU are 

much closer to the FPGA than the MobileNetV2 results. The GPU consumed the highest amount of energy 

during inference for ten images. However, for one image, the energy consumption was much less than the 

CPU and closer to the FPGA, which may be due to the GPU consuming more energy as the image buffer is 

saturated. The XavierNX continues to consume less energy than the other architectures with a 3.38x energy 

improvement but at the cost of runtime.  

Best case improvements when using accelerators 

 

Figure 10: Relative time and energy gains (wrt host CPU) for each benchmark’s largest test data runs. Note the host CPU varies. 

Figure 10 shows the best-case improvement in time and energy efficiency relative to the relevant CPU 

implementation and the hardware used to achieve that improvement where the dashed line is at a relative 

gain of 1.0x. Where there are two problem sizes in the benchmark the largest has been chosen. In both the 

CNN benchmarks the U50 FPGA provided the greatest speedup while the embedded device, the Jetson 

XavierNX provided the greatest improvement in energy efficiency. The overall greatest improvement in 

energy efficiency was found when using the FPGA to calculate a 2D FFT, where we also found a significant 

improvement in runtime, showing the potential for FPGAs to be both time and energy efficient when 

programmed well. GPUs are well known to be efficient at dense matrix algebra and our findings reinforce 

that; we found a nearly 40x improvement in the runtime while improving the energy efficiency by over 2x. 

Of interest is the performance of the embedded platform which performed significantly worse in terms of 

runtime but provided excellent energy efficiency compared to other platforms. 

We observed that the performance (time and energy to solution) on the FPGA was highly sensitive to the 

configuration/optimisation of the available port. For example, by default the linker builds a single hardware 

instance from a kernel. However, if the host program executes the same kernel multiple times (e.g. in the 

case of GEMM) then the linker forces the kernel to be executed sequentially. This impacts overall application 

performance. However, configuring the kernel linking stage to instantiate multiple hardware compute units 



(CUs) from a single kernel would execute kernels concurrently by running separate compute units, which in 

turn increases the performance. Additionally, optimising kernel-to-memory connectivity was essential to 

maximising bandwidth and data transfers. Furthermore, assigning kernels or CUs to specific super logic 

regions (SLR) (important when assigning kernel ports to specific memory banks) improves placement and 

timing results. Even if there is only one compute unit in the device, mapping its input and output arguments 

to different global memory banks can improve performance by enabling simultaneous accesses to input and 

output data.  

Thus, whilst there are energy savings observed by use of FPGA compared to either CPU or GPU, we have 

reason to expect further savings are available by deep(er) optimisation of the FPGA ports for the given FPGA 

cards used. We also suggest that CPU and GPU ports will have had time and community engagement to 

more fully optimise than is the case for FPGAs, hence their observed performances would be closer to the 

optimal possible. 

7. Discussion & Conclusions 
From analysis of the selected benchmarks we observed there is always, for the largest data sizes used, an 

energy gain to be achieved when using an accelerator rather than CPU, although the gains & choice of 

accelerator vary. Given there is scope for accelerators to significantly reduce the energy to solution, and that 

(for FPGA technology in particular) it is necessary to expend effort (& expertise) on tuning the port, we 

recommend UKRI consider a core team of trained experts to support and train researchers. 

In terms of initial project objectives: we have shown a methodology for measuring energy for each 

component of a heterogeneous system comprising CPUs, GPUs and FPGAs (Sections 3 & 5) and we evaluated 

a range of benchmarks for use in comparing heterogeneous implementations (Section 6). The original list of 

benchmark codes to implement was about a dozen codes but in practice many of the FPGA ports were not 

runnable “out of the box” on our cards. The short period of this project excluded manual porting (or 

optimising) and thus the final set of benchmarks implemented (Table 2) was reduced. Therefore we have not 

been able to map benchmarks examined to typical loads within UKRI DRI in order to calculate energy savings 

possible by switching from running applications on CPUs to running on the most appropriate hardware.  

Beyond the scope of the current project, further fine grained analysis could be done which includes profiling 

of the algorithms and components with any given algorithm. This would result into finding the fine grained 

suitability of the algorithms and its component to various target hardware. Additionally, further optimisation 

can improve the outcome through efficient native implementation as well as applying parallelism (especially 

on FPGAs), e.g., pipeline parallelism, task parallelism or data parallelism.  

While our benchmarks shows that FPGAs are energy efficient, it is to be noted that FPGAs requires long 

synthesis time. However, availability of software emulators makes this problem less daunting and it is a 

worthy investment given key codes would be run millions of times once ported (and the comparative efforts 

already invested in optimising CPU/GPU implementations).  

Further we note that not all applications will be applicable to data flow approach that is optimal for FPGA 

implementation. Unfortunately, there was insufficient time within the ENERGETIC project to examine a large 

range of benchmarks to give fine grained recommendations on which UKRI applications would be most 

suitable for porting to FPGA in terms of energy reductions. 

The project, both in terms of our implementations but also via the national workshop (Section 4), has 

identified various challenges to energy monitoring at the application level. Uppermost, are the frequent 

need for system administrations to intervene to permit energy data to be accessible to users and the lack of 

a single interface providing easy access for energy usages across the components of a heterogeneous 

system. The project has a small number of Recommendations as seen in Section 9. 



Our results, and other similar benchmarking efforts, suggest that, as long as a problem is parallelisable and 

sufficiently large to take proper advantage of a device, codes looking to minimise energy use (and thus 

carbon emissions) should target accelerators over CPUs. Given that most accelerated HPC systems contain 

only GPUs, and that GPUs are significantly simpler to program using current development stacks, it is 

ENERGETIC’s recommendation that UKRI focus on enabling acceleration of HPC codes through GPU 

development. However, given the strong potential of FPGAs to be more energy efficient, and the rapid 

improvement of FPGA programming tools, training and resources, we also recommend UKRI continue to 

explore the technology as a potential future component of energy efficient HPC systems. 

8. Impact of ENERGETIC Project 
➢ Bane and Quinn each gave a presentation at the HPC-AI Advisory Council UK workshop, with Quinn 

also being a panel member. https://www.hpcadvisorycouncil.com/events/2022/uk-

conference/agenda.php 

➢ Bhowmik and Ali gave a plenary presentation at Computing Insight UK conference. Brown and Bane, 

supported by all ENERGETIC project members, ran a ½ day workshop at this conference [CIUK] 

➢ (clean version of) all data is available (under GNU GPL licence) at MMU RDS “e-space” [e-space] 

➢ the project’s Final Report is available at e-space and the ENERGETIC project web page: https://ukri-

netzero-energetic.github.io/ 

➢ original project proposal: 10.5281/zenodo.6787467 

9. Recommendations 
The ENERGETIC project recommends that: 

➢ UKRI invests mainly in GPU hardware and associated training and development time to accelerate 

current HPC workloads. Alternative accelerators including but not limited to FPGAs should continue 

to be explored and benchmarking efforts funded to improve understanding of differences in energy 

efficiency across different classes of algorithms. 

➢ UKRI compute-focused DRI administrators endeavour to provide a common interface or framework 

to abstract underlying monitoring mechanisms and expose energy consumption data to users. 

➢ UKRI commits to requiring user-level energy monitoring in a specified format to be available on all 

UKRI-funded DRI, and incorporates this into the funding and procurement processes. 

➢ UKRI invests in raising awareness of the need to optimise for least energy consumption 

➢ UKRI invests in upskilling researchers regarding (env.) sustainable software principles & best 

practises, via Green Software Engineers (GSEs) and encouraging researchers and system admin to 

undertake Green Software training (e.g. 

https://trainingportal.linuxfoundation.org/learn/course/green-software-for-practitioners-lfc131) 
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Appendix 1: Box-whiskers plots supporting Section 5 Discussion 

 
 

  

 
 

 
 

Figure 11: Box-whisker plots of energy consumed for various benchmarks for software ("SW") and datalogger (“DL”) approaches as 
discussed in Section 5.. 



Appendix 2: Data supporting Section 6 Figures & Discussion 
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